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Abstract

The principal advantage of NMR at high field is the concomitant increase in signal-to-noise ratio (SNR). This can be traded for
improved spatial resolution and combined with parallel imaging to achieve higher temporal resolution. At high field strength, the
RF-wavelength and the dimension of the human body complicate the development of NMR coils. For example, at 7 T, the wavelength
in free space corresponds to about 1 m. The dielectric constant in tissue with a high water content can be as high as 70 and at a larmor
frequency of 300 MHz, this corresponds to a wavelength inside tissue of less than 15 cm. The operating wavelength is thus comparable to
the diameter of most body parts. To this end, both temporal and spatial variations of the excitation field must be taken into account in
addition to the expected increase in conductivity. For all these reasons, we find the propagation of radiation at ultra high fields (>4 T)
new phenomena commonly observed in quantum optics but traditionally negligible in NMR such as phase modulation of the excitation
field such that the identity between pulse area and flip angle is no longer valid. In this paper, the emergence of field propagation phe-
nomena in NMR experiments is analytically and numerically demonstrated. It is shown that in addition to the well-studied dielectric
resonance phenomena at high magnetic fields (>4 T), field propagation effects transform the excitation pulse into an adiabatic excitation.
The high field strength also mean that nonlinear effects such as self-induced transparency are now possible in NMR experiments.
� 2006 Elsevier Inc. All rights reserved.
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1. Introduction

The NMR Bloch equations govern the effect that a
coherent RF excitation has on a spin system in equilibrium
under the influence of an applied main homogeneous field
B0. The RF field thus acts as a driving source for the spins
perturbing this equilibrium situation. However, at ultra
high magnetic fields strengths (>4 T), the wavelength of
the propagating excitation field decreases. The wavelength
decreases even further in biological tissues, since many bio-
logical samples have high relative dielectric constants (er).
For example, gray matter er = 56.2, cerebrospinal fluid
er = 70.3, while the water/saline relative dielectric constant
is 78 [1]. Hence the higher water content in tissue corre-
sponds to a higher dielectric constant for that tissue. The
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high dielectric constant of tissue coupled with the reduced
excitation pulse wavelength due to the high field strength
lead to an even smaller wavelength that is on the order
of the imaging field of view (FOV) such that field propaga-
tion effects become significant. For example, the electro-
magnetic wavelength at 7 T (300 MHz) is 1 m in free
space, but only 14 cm in the head assuming an averaged
relative dielectric constant of 49 for brain tissue. We thus
find, where propagation of radiation is studied, new phe-
nomena hitherto unknown in low field magnetic resonance
experiments.

To this end, it is necessary to include Maxwell’s wave
equations where the spins in turn act as a source term for
the propagating electromagnetic field. It is this coupled sys-
tem of spins and electromagnetic fields that provide a full
interaction picture in the NMR sample at high field
strengths. To date, most research in this area has focused
on the interaction between the RF pulse and the high

mailto:kiruluta@physics.harvard.edu


A.J.M. Kiruluta / Journal of Magnetic Resonance 182 (2006) 308–314 309
permittivity of the imaging sample whose dimension is
comparable to the wavelength of electromagnetic fields at
the resonant frequency for which B1 inhomogeneity is sig-
nificant. This B1 inhomogeneity has to date been entirely
attributed to the phenomena of dielectric resonance [2–4],
a form of resonant cavity effect. It will be shown in detail
in the next paper that the dielectric resonance arises from
a resonant cavity set up by the index mismatch between
the sample and air interfaces. It will be shown that such
a formulation renders itself well to novel ways of mitigating
this effect by dampening the resonance. Here we introduce
another component of the phase modulation phenomena
that arises entirely from the propagation of the excitation
field across the sample in a single pass.
2. Excitation propagation effects

In general, the excitation RF field in an NMR medium is
not affected by the transient response of the medium or is
assumed negligible. This is a reasonable approximation if
the medium is ‘thin’ such that no appreciable distortion
of the exciting pulse can happen in propagating through
the medium.

We have previously shown that higher field NMR
(>4 T) can be formulated as a diffraction off a spatial-
spectral holographic grating [5,6]. The spectral compo-
nent arises naturally from the imposed gradient fields
or due to the intrinsic chemical anisotropy of the sample.
We showed that the spatial holographic component aris-
es from a high dielectric constant (>50) of the NMR
medium at high field strength when the excitation wave-
length is commensurate with the size of the NMR sam-
ple. This results in the emergence of the propagation
wave vector ~k in NMR and its far reaching consequences
to the phase dispersion of the excitation field as it prop-
agates in the sample.

For an imaging FOV that is larger than the wavelength
(thick material), it is necessary to account for the material’s
effect on the propagating field. In typical imaging applica-
tions, up to about 2 T, the solution to the Bloch equations
can assume that the material does not act on the propagat-
ing field. This is only a good approximation when the
absorption length of the material is small and it therefore
has a minor effect on the propagating field. For thicker
materials or equivalently for ultra high fields, this is not
true and the effect of the material polarization on the field
must be considered in order to take into account absorp-
tion and emission in the material. The medium’s impact
on the propagating field can be determined using Max-
well’s wave equation. First, let us assume the following
form for the propagating RF excitation field in the labora-
tory frame:

B01ðt;~rÞ ¼ Beðt;~rÞei½~k�~r�x0tþ/ðt;~rÞ� þ c:c; ð1Þ

where ~r ¼ x̂þ iŷ and with Beðt;~rÞ as the excitation pulse
envelope. The prime notation B01ðt;~rÞ is used to distin-
guish it from the one in the rotating frame which we
will adopt shortly throughout the rest of this paper.
Note that both the propagation wave vector ~k and
the spatially varying phase /ðt;~rÞ of the excitation field
are new to NMR. The transverse magnetic polarization
vector arising from this excitation field is thus given
by:

Mx0;y0 ðt;~rÞ ¼ 1
2
f½Mx0 ðt;~rÞ þ iMy0 ðt;~rÞ�ei½~k�~r�Dxtþ/ðt;~rÞ�

þ c:cg; ð2Þ

where Mx0 and My0 are the in phase and quadrature compo-
nents of the magnetic polarization and where Dx = x � x0

is the off-resonance component in a rotating frame at a rate
x0 = cB0. Plugging these last two equations into Maxwell’s
wave equation,

r2B1ðt;~rÞ �
n2

c2

o2B1ðt;~rÞ
ot2

¼ 4p
c2

o2M
ot2

ð3Þ

and equating real (in-phase) and imaginary (quadrature)
components, one gets

ðK2 � K2ÞBeðt;~rÞ ¼ 2pk2Dp

�
Z 1

�1
Mx0 ðt;~r; DxÞgðDxÞ dDx; ð4Þ

2 ~K � oBeðt;~rÞ
o~r

þ k
c

oBeðt;~rÞ
ot

� �

¼ �2pk2Dp
Z 1

�1
My0 ðt;~r; DxÞgðDxÞdDx; ð5Þ

where g(Dx) is the normalized inhomogeneous broadening
linewidth function (usually a Gaussian distribution), D is
the spin density, p is the spin matrix element of a two-level
transition (for example proton spectroscopy) and Dx is the
detuning or off-resonance frequency component. The use
of the slowly varying envelope approximation is liberally
applied as

r2Beðt;~rÞ � jKj2 o2Beðt;~rÞ
ot2

� x2Beðt;~rÞ ð6Þ

and

oMx0 ðt;~rÞ
ot

� 2pk2My0 ðt;~rÞ;
o2My0 ðt;~rÞ

ot
� 2pk2Mx0 ðt;~rÞ: ð7Þ

Here k ” 2p/k is the vacuum wave vector and
jKj2 ¼ k2

x þ k2
y þ k2

z is the square of the material wave vec-
tor. Inhomogeneous linewidth broadening whether due to
intrinsic chemical shift anisotropy or due to imposed gradi-
ent fields leads to a degeneration of the two-level spin sys-
tem corresponding to a range of resonant frequencies as
shown in Fig. 1.

Now, returning to the NMR torque equation in the
rotating frame (at x0 = cB0), and with the transformation
of the circularly polarized excitation field into the rotating
frame so that B01ðt;~rÞ ¼ B1ðt;~rÞx̂ we have



Fig. 1. Gradient induced inhomogeneous broadening of an NMR sample with an inhomogeneous bandwidth that is given by CI ¼ ~G �~r. An excitation
pulse resonantly excites portions of the absorption spectrum coincident with its bandwidth. The spectral content of the excitation is thus stored in the
absorption profile as an ensemble of spectral holes corresponding to the bandwidth of the excitation.
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d~M
dt
¼ ~M � cB1ðt;~rÞx̂0 þ ~k �~r þ Dxþ o/ðt;~rÞ

ot

� �zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{D

ẑ

2
664

3
775

� ðMxx̂0 þMyŷ0Þ
T 2

� ðMz �M0Þ̂z
T 1

; ð8Þ

where ~M ¼ Mxx̂0 þMyŷ0 þMzẑ0 is the total macroscopic
polarization vector and ðx̂0; ŷ0; ẑÞ are the unit vector in the
rotating frame pivoted on axis ẑ and D is the total detuning
parameter.

The effective off-resonance frequency and instanta-
neous propagation wave vector in this rotating frame
are given by

xe ¼ Dxþ o/ðt;~rÞ
ot

ð9Þ

and

~ke ¼~k þ
o/ðt;~rÞ

o~r
; ð10Þ

respectively.
In the presence of damping, the modified Bloch equation

in a rotating frame, is written out completely in component
form as

dM 0
x

dt
¼ M 0

y
~k �~r þ Dxþ o/ðt;~rÞ

ot

� �
�M 0

x

T 2

; ð11Þ
dM 0
y

dt
¼ �M 0

x
~k �~r þ Dxþ o/ðt;~rÞ

ot

� �
þ cB1ðt;~rÞMz �

M 0
y

T 2

;

ð12Þ
dMz

dt
¼ �cB1ðt;~rÞM 0

y þ
M0 �M2

T 1

; ð13Þ

and M 0
x, M 0

y , and Mz are strongly restricted by the
probability

M 02
x þM 02

y þM2
z ¼ constant; ð14Þ

which is valid over time intervals short compared to T1 and
T2. If T1 and T2 are both much longer than the excitation
pulse duration, damping may be ignored altogether and

M 02
x þM 02

y þM2
z ¼ 1 ð15Þ

may be used for the conservation of probability. Combin-
ing Eqs. (4), (5), (7), and (11)–(13) yields

~K � rBeðt;~rÞ þ kn
c

oBeðt;~rÞ
ot

¼ �2pk2Dp

�
Z 1

�1
MyðDx;~r; tÞgðDxÞdDx

ð16Þ
and

o/ðt;~rÞ
ox

¼ 2pk2Dp
Z 1

�1
Mxðt;~rÞgðDxÞdDx: ð17Þ
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Eqs. (16) and (17) along with the inhomogeneous Bloch
equations (11)–(13) give us a complete system of equations
for analyzing material responses due to a propagating field
whose frequency bandwidth spans the larmor resonance.
These modified equations are similar in general form to
those in quantum optics where they are collectively known
as the coupled Maxwell–Bloch equations [7].

The solution to these four-dimensional coupled equa-
tions is quite complex to unravel analytically, but in the
small perturbation regime (small excitation pulse areas cor-
responding to small tip-angle regime), a good approxima-
tion to the solution can be found. A complete solution
would involve determining the Bloch vector at each spatial
location from the beginning of the imaging volume given
the initial field and then using this information to deter-
mine the effect of the spins on this field. This field is then
used as a driving term for the next set of spins for next suc-
cessive thin slice in this volume. These spins produce a
macroscopic polarization that is again used as a driving
term in Maxwell’s propagation equation for the next thin
slice in the volume. In this iterative fashion throughout
the imaging volume, one can determine the overall radiated
field that is a result of initial material excitation. Let us
begin by analyzing the impact of this spatial variation of
the electromagnetic field on the Bloch solutions in both
the on-resonance and off-resonance cases.

With the assumption that the duration of the RF excita-
tion pulse is shorter than both T1 and T2, the dynamical
evolution of the spin variables can thus be studied as if
the damping terms were not present. In the absence of
damping, the Bloch equation reduces to

dMx

dt
¼ My

~k �~r þ Dxþ o/ðt;~rÞ
ot

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

D

; ð18Þ

dMy

dt
¼ �Mxð~k �~r þ Dxþ o/ðt;~rÞ

ot
Þ þ cB1ðt;~rÞMz; ð19Þ

dMz

dt
¼ �cB1ðt;~rÞMy ; ð20Þ

and the conservation law hold exactly. Note that we have
dropped the prime notation for brevity with the under-
standing that all subsequent analysis is done in the rotating
coordinate frame.

First we look at the Bloch equations exactly on-reso-
nance (D = 0), remembering that B1ðt;~rÞ, is now a spatial-
temporal field. The most common initial condition, in
which all the spin bulk magnetization is along the longitu-
dinal axis, leads to Mxðt;~r; D ¼ 0Þ ¼ 0 for the duration of
the RF excitation pulse and Mz = M0. In that case, the
Bloch equations reduce to a pair

dMy

dt
¼ cB1ðt;~rÞMz; ð21Þ

dMz

dt
¼ �cB1ðt;~rÞMy ð22Þ

with solutions
Mx0 ðt;~r; 0Þ ¼ 0; ð23Þ
My0 ðt;~r; 0Þ ¼ sin hðt;~rÞ 0 6 t 6 sp; ð24Þ
Mzðt;~rÞ ¼ cos hðt;~rÞ; ð25Þ
where we have normalized the initial longitudinal magneti-
zation magnitude such that M0 = 1 for notational simplic-
ity, sp is the duration of the RF pulse and with the Bloch
tipping angle identical to the pulse area in the usual way

hðt;~rÞ ¼ c
Z t

�1
B1ðt0;~rÞdt0 ð26Þ

except that now the dependence on position is allowed for
so that the spin flip angle is not just determined by the area
of the pulse but also by the propagation distance of the RF
pulse from the excitation coil to the spin location.

Now consider the case of an off-resonance excitation
with an arbitrary RF envelope. Because the RF field is spa-
tially varying, the usual Rabi solutions for spin population
inversion in the presence of detuning [8] cannot be expected
to be relevant here in solving the Bloch equation (18)–(20).
Here we present an extension of Eberly [9] original
approach for solving a related optical Bloch equation prob-
lem in quantum optics. It is reasonable to expect that the
off-resonance spins respond to the RF pulse in the same
way as the resonant spins, but perhaps with a detuning-de-
pendent reduction in amplitude. Thus we assume the valid-
ity of the simple factorization into a product of on- and
off-resonance components.

Myðt;~r; DÞ ¼ Myðt;~r; 0ÞF ðDÞ; ð27Þ
where F(D) is the spin ‘spectral response’ function. Eq. (20)
is integrable if _h ¼ ohðt;~rÞ=ot is substituted for cB1ðt;~rÞ and
My0 is expressed in terms of h by using Eqs. (23), (25), (26),
and (27), the z-component of magnetization in Eqs. (18)–
(20) is then expressed as

Mzðt;~r; DÞ ¼ �F ðDÞ cos hþ F ðDÞ � 1: ð28Þ
We now have both My and Mz as functions of h. We pro-
ceed to also express Mx as a function of h. Eqs. (18) and
(20) can then be solved for

dMx0
dt D, where D = x � x0 is

the usual detuning operator.
When these two equations are equated for dM 0x

dt D, they
yield an equation for h alone

€h ¼ D2F ðDÞ
1� F ðDÞ sin h: ð29Þ

This equation can be formulated into the well-known pen-
dulum problem

€h� 1

s2
sin h ¼ 0; ð30Þ

where s2 = 1 � F(D). Only one solution out of a full
range of elliptic functions can be made to fit the bound-
ary conditions relevant to a single RF pulse. Both
B1ðt;~rÞ and oB1ðt;~rÞ=ot must vanish at t = ±1, so that
_h and €h must satisfy the same conditions. The solution
for h is
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hðt;~rÞ ¼ 4 tan�1 exp
t � t0

s

� �h i
ð31Þ

and the RF field envelope corresponding to such h behav-
ior is the famous hyperbolic secant pulse of McCall and
Hahn [10].

B1ðt;~rÞ ¼
2

cs
sech

t � t0

s

� �
: ð32Þ

The~r dependence of h and B1 are hidden in t0. The param-
eter s is clearly the pulse length. The dipole spectral re-
sponse function can be found in terms of the pulse length
and the Lorentzian detuning term,

F ðDÞ ¼ 1

1þ ðDÞ2
: ð33Þ

What then is the relationship between Maxwell’s equations
and the solution given in Eq. (31)? Consider for example,
the area under the envelope of the RF pulse as given by

Aðt;~rÞ ¼
Z t

�1
Beðt;~rÞdt0: ð34Þ

The first step is the integration of the quadrature Maxwell
equation (5) from t = �1 up to time t00 that occurs after
the pulse has passed the point of observation~r. The quan-
tum mechanical result is

oAðt00;~rÞ
o~r

¼ pDp
2K

k2

Z
dDxgðDxÞ

Z t00

�1
Myðt;~r; DxÞdt: ð35Þ

This equation integrates to

oAðt00;~rÞ
o~r

¼ pDp
2K

k2pgð0ÞMyðt0;~r; 0Þ: ð36Þ

Now, the absorptive part of the on-resonance spin ampli-
tude is a nonlinear function of h, and thus of area:

Myðt0;~r; 0Þ ¼ � sin Aðt0;~rÞ: ð37Þ
Because Beðt;~rÞ ¼ 0 for all t > t0, Aðt00;~rÞ is exactly as
Aðt0;~rÞ. The area theorem first derived by McCall and
Hahn [10,11], and now extended here to high field NMR,
is thus given by

o

o~r
Aðt00;~rÞ ¼ �1

2
a sin Aðt00;~rÞ: ð38Þ

The absorption coefficient a is then defined

a ¼ 4p2Dpx
�hc

gð0Þ: ð39Þ

In the limit of the weak excitation fields, the area is small
and sin A � A so that in this limit the quantum area theo-
rem becomes a linear relation

o

o~r
Aðt;~rÞ ¼ �1

2
aAðt;~rÞ: ð40Þ

It is apparent that when A P p, there are significant new
features in the quantum expression. Most notably, if
A = np, for any n, the pulse envelope area suffers no atten-
uation in propagation since oA

o~r ¼ 0. The areas that are even
multiples of p are more stable than those that are odd mul-
tiples. Hence, with increasing penetration of the RF excita-
tion pulse into the NMR medium, the area tends towards
even multiples of p pointing a way to optimizing pulses
via Eq. (38) a subject of a subsequent paper. This is the
NMR equivalent of the quantum optics self-induced trans-
parency result of McCall and Hahn [10] which states that if
the pulse has an area h ¼

R1
�1 cBðtÞdt equal to 2np with n

as an integer, and has a certain definite pulse shape, then
it can propagate through the resonant (ordinarily absorb-
ing) medium without attenuation and change in pulse
shape, as long as the T1 and T2 relaxations are much longer
than the transit time of the pulse through the material.

The basic idea of self-induced transparency can be seen
from the Bloch vector picture. Normally, the excitation
pulse would spread out in space and time as a result of dif-
fraction and dispersion. However when the pulse is very
intense, nonlinear effects can exactly cancel this spreading,
and the excitation pulse will propagate without any change
in shape.

Consider a 2np pulse excitation field, with n as an inte-
ger, such that the magnetization vector ~M precesses about
B0 over full circles and ending up in its original position.
Therefore, since the spin energy population distribution is
the same before and after the pulse, it absorbs no net ener-
gy from the pulse. However, during the pulse propagation,
it does absorb and emit photons while redistributing energy
in the pulse. Consequently, the transmitted pulse appears
to be altered in shape unless it already has the proper
shape. As we showed, the proper field envelope for a 2p
pulse is of a hyperbolic secant form. In propagating
through the medium, the pulse is apparently delayed
because the medium absorbs energy from the leading part
of the pulse and deposits it back to its tail end.

Self-induced transparency is characterized by reduced
absorption, pulse delay, pulse deformation and pulse split-
ting. It is however a much harder experiment to devise due
to inherent losses in the system and especially in an inho-
mogeneous media like tissue. For example, when an excita-
tion pulse propagates in a non-uniform resonant medium,
such as a periodic array of resonant absorbers or through
a heterogeneous dielectric medium such as tissue, such
structures can destroy self-induced transparency , because
the pulse area is then split between the forward and back-
ward (reflected) coupled waves, and the phase coherence of
the pulse is no longer conserved. This is exactly what hap-
pens in the presence of dielectric resonance effect in NMR.

The pulse delay and pulse breakup are the more con-
vincing evidence of the presence of self-induced transparen-
cy and those are predicted in homogeneous medium with a
high dielectric constant at pulse energies capable of multi-
ple rotations (2np).

3. Phase modulation effects

Let us take a closer look at the impact of the detuning
parameter D. A more general expression for the excitation



Fig. 2. Graph of solutions in Eqs. (43)–(46). All horizontal scale are in
multiples of s.
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field, in the rotating frame, is given in Eq. (2) and is repeat-
ed here for brevity

Mxyðt;~rÞ ¼
1

2
½Mx0 ðt;~rÞ þ iMy0 ðt;~rÞ�ei½ ~k�~r�Dxtþ/ðt;~rÞ� þ c:c
n o

:

ð41Þ
The instantaneous wave vector can now be identified as
k � o/

oz and is not necessarily a constant. The field frequency
is no longer constant and can be denoted as

xðtÞ ¼ �Dxþ o/ðt;~rÞ
ot

ð42Þ

leading to frequency modulation phenomena similar to
adiabatic excitations.

We are interested in the response of the spins to an
applied field and not the radiation emitted by the material.
We thus set Dx = 0 and ignore Maxwell’s equation to solve
the Eqs. (11)–(13). Not surprisingly, the ‘natural’ solutions
to these equations under these conditions are the well-
known approximate results in the context of adiabatic
inversion. If the magnitude of the frequency sweep is
denoted by 2dx, then

o/ðt;~rÞ
dt

¼ �dx tanh
t � t0

s

� �
; ð43Þ

Mx ¼
�dxsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðdxsÞ2
q sech

t � t0

s

� �
; ð44Þ

My ¼
�1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ ðdxsÞ2
q sech

t � t0

s

� �
; ð45Þ

Mz ¼ tanh
t � t0

s

� �
: ð46Þ

Hence

B1ðt;~rÞ ¼
1

cs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðdxsÞ2

q
sech

t � t0

s

� �
: ð47Þ

The similarity of the solution with adiabatic inversion is
not a coincidence. Adiabatic inversion is achieved by slow-
ly changing the magnitude of the longitudinal component
of the magnetic field so that the effective field changes sign,
thus inverting all of the spins that are following the effective
field.

It is just as effective to frequency modulate the driv-
ing field, that is, put time dependence into x, as it is to
vary x0. Note that if dx fi 0, then Bðt;~rÞ becomes a
standard p pulse. That is the area of the envelope in
Eq. (47) is

A ¼
Z

cBðt;~rÞdt ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðdxÞ2

q
; ð48Þ

which reduces to A = p as d fi 0. A p pulse naturally
inverts the spins. However, if the frequency modulation
is substantial such that dxs ¼

ffiffiffi
3
p

, then A = 2p. Unusual
phenomena such as a 2p pulse that acts as an inversion
pulse become apparent! The reason for this is that in
the presence of frequency modulation, the identity
between pulse area and spin flip angle is no longer val-
id. As soon as frequency modulation of the driving field
is present, the area theorem cannot be derived and
hence the concept of flip angle in high field NMR is
problematic.

Adiabatic changes implied by the solutions given in Eqs.
(43)–(46) were simulated in matlab and are plotted in Fig. 2.
The spin inversion Mz is shown on the same time axis with
the excitation field B1ðt;~rÞ and the instantaneous frequency
shift o/ðt;~rÞ

ot . In conventional NMR where propagation effects
are negligible, the constant-amplitude field B1(t,x)and line-
ar frequency sweep o/ðt;~rÞ

ot are usually assumed in approxi-
mate treatments in the interval (�0.5s 0.5s). Beyond this
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linear regime (>4 T), propagation effects become significant
and must be taken into consideration.

4. Discussion

The current trend towards high field NMR systems both
for the improvement in SNR and hence resolution as well
as more spectral dispersion in spectroscopy studies, is com-
plicated by the emergence of field propagation phenomena
due to the small wavelength compared to the FOV. In this
paper, an analysis of field propagation phenomena has
been presented by deriving an NMR equivalent set of cou-
pled Bloch–Maxwell equations. Solutions to this set of
equations yielded an extension of the well-known adiabatic
inversion problem. The traditional link between pulse area
and flip angle in low field NMR is also shown to be invalid
in high field strength NMR when the imaging FOV is larg-
er than the excitation wavelengths.
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